293 research outputs found

    Global Exponential Attitude Tracking Controls on SO(3)

    Full text link
    This paper presents four types of tracking control systems for the attitude dynamics of a rigid body. First, a smooth control system is constructed to track a given desired attitude trajectory, while guaranteeing almost semi-global exponential stability. It is extended to achieve global exponential stability by using a hybrid control scheme based on multiple configuration error functions. They are further extended to obtain robustness with respect to a fixed disturbance using an integral term. The resulting robust, global exponential stability for attitude tracking is the unique contribution of this paper, and these are developed directly on the special orthogonal group to avoid singularities of local coordinates, or ambiguities associated with quaternions. The desirable features are illustrated by numerical examples

    Geometric Controls for a Tethered Quadrotor UAV

    Full text link
    This paper deals with the dynamics and controls of a quadrotor unmanned aerial vehicle that is connected to a fixed point on the ground via a tether. Tethered quadrotors have been envisaged for long-term aerial surveillance with high-speed communications. This paper presents an intrinsic form of the dynamic model of a tethered quadrotor including the coupling between deformations of the tether and the motion of the quadrotor, and it constructs geometric control systems to asymptotically stabilize the coupled dynamics of the quadrotor and the tether. The proposed global formulation of dynamics and control also avoids complexities and singularities associated with local coordinates. These are illustrated by numerical examples

    Geometric Adaptive Control for a Quadrotor UAV with Wind Disturbance Rejection

    Full text link
    This paper presents a geometric adaptive control scheme for a quadrotor unmanned aerial vehicle, where the effects of unknown, unstructured disturbances are mitigated by a multilayer neural network that is adjusted online. The stability of the proposed controller is analyzed with Lyapunov stability theory on the special Euclidean group, and it is shown that the tracking errors are uniformly ultimately bounded with an ultimate bound that can be abridged arbitrarily. A mathematical model of wind disturbance on the quadrotor dynamics is presented, and it is shown that the proposed adaptive controller is capable of rejecting the effects of wind disturbances successfully. These are illustrated by numerical examples
    • …
    corecore